A robust a posteriori error estimate for the Fortin-Soulie finite-element method

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust a posteriori error estimation for the nonconforming Fortin-Soulie finite element approximation

We obtain a computable a posteriori error bound on the broken energy norm of the error in the Fortin–Soulie finite element approximation of a linear second order elliptic problem with variable permeability. This bound is shown to be efficient in the sense that it also provides a lower bound for the broken energy norm of the error up to a constant and higher order data oscillation terms. The est...

متن کامل

A posteriori error estimate for the mixed finite element method

A computable error bound for mixed finite element methods is established in the model case of the Poisson–problem to control the error in the H(div,Ω) ×L2(Ω)–norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart–Thomas, Brezzi-Douglas-Marini, and Brezzi-DouglasFortin-Marini elements. 1. Mixed method for the Poisson problem Mixed finite element methods are well-e...

متن کامل

Residual-based a posteriori error estimate for a mixed Reißner-Mindlin plate finite element method

Reliable and efficient residual-based a posteriori error estimates are established for the stabilised locking-free finite element methods for the Reissner-Mindlin plate model. The error is estimated by a computable error estimator from above and below up to multiplicative constants that do neither depend on the mesh-size nor on the plate’s thickness and are uniform for a wide range of stabilisa...

متن کامل

A posteriori error estimate in quantities of interest for the finite element heterogeneous multiscale method

We present an a posteriori error analysis in quantities of interest for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. The multiscale method is based on a macro-to-micro formulation, where the macroscopic physical problem is discretized in a macroscopic finite element space and the missing macroscopic data is recovered on-the-fly using the so...

متن کامل

A Posteriori Error Estimate for Stabilized Finite Element Methods for the Stokes Equations

Computation with adaptive grid refinement has proved to be a useful and efficient tool in scientific computing over the last several decades. The key behind this technique is the design of a good a posterior error estimator that provides a guidance on how and where grids should be refined. In this paper, the authors propose and analyze a posteriori error estimator for a stabilized finite elemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2004

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2004.07.011